Strong tractability of multivariate integration using quasi-Monte Carlo algorithms
نویسنده
چکیده
We study quasi–Monte Carlo algorithms based on low discrepancy sequences for multivariate integration. We consider the problem of how the minimal number of function evaluations needed to reduce the worst-case error from its initial error by a factor of ε depends on ε−1 and the dimension s. Strong tractability means that it does not depend on s and is bounded by a polynomial in ε−1. The least possible value of the power of ε−1 is called the ε-exponent of strong tractability. Sloan and Woźniakowski established a necessary and sufficient condition of strong tractability in weighted Sobolev spaces, and showed that the ε-exponent of strong tractability is between 1 and 2. However, their proof is not constructive. In this paper we prove in a constructive way that multivariate integration in some weighted Sobolev spaces is strongly tractable with ε-exponent equal to 1, which is the best possible value under a stronger assumption than Sloan and Woźniakowski’s assumption. We show that quasi–Monte Carlo algorithms using Niederreiter’s (t, s)-sequences and Sobol sequences achieve the optimal convergence order O(N−1+δ) for any δ > 0 independent of the dimension with a worst case deterministic guarantee (where N is the number of function evaluations). This implies that strong tractability with the best ε-exponent can be achieved in appropriate weighted Sobolev spaces by using Niederreiter’s (t, s)-sequences and Sobol sequences.
منابع مشابه
A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms
We prove in a constructive way that multivariate integration in appropriate weighted Sobolev classes is strongly tractable and the e-exponent of strong tractability is 1 (which is the best-possible value) under a stronger assumption than Sloan and Wo! zniakowski’s assumption. We show that quasi-Monte Carlo algorithms based on the Sobol sequence and Halton sequence achieve the convergence order ...
متن کاملStrong Tractability of Quasi-Monte Carlo Quadrature Using Nets for Certain Banach Spaces
We consider multivariate integration in the weighted spaces of functions with mixed first derivatives bounded in Lp norms and the weighted coefficients introduced via `q norms, where p, q ∈ [1,∞]. The integration domain may be bounded or unbounded. The worst-case error and randomized error are investigated for quasi-Monte Carlo quadrature rules. For the worst-case setting the quadrature rule us...
متن کاملStrong tractability of integration using scrambled Niederreiter points
We study the randomized worst-case error and the randomized error of scrambled quasi–Monte Carlo (QMC) quadrature as proposed by Owen. The function spaces considered in this article are the weighted Hilbert spaces generated by Haar-like wavelets and the weighted Sobolev-Hilbert spaces. Conditions are found under which multivariate integration is strongly tractable in the randomized worst-case s...
متن کاملTractability of Multivariate Integration for Periodic Functions
We study multivariate integration in the worst case setting for weighted Korobov spaces of smooth periodic functions of d variables. We wish to reduce the initial error by a factor ε for functions from the unit ball of the weighted Korobov space. Tractability means that the minimal number of function samples needed to solve the problem is polynomial in ε−1 and d. Strong tractability means that ...
متن کاملTractability of the Quasi-Monte Carlo Quadrature with Halton Points for Elliptic Pdes with Random Diffusion
This article is dedicated to the computation of the moments of the solution to stochastic partial differential equations with log-normal distributed diffusion coefficient by the Quasi-Monte Carlo method. Our main result is the polynomial tractability for the QuasiMonte Carlo method based on the Halton sequence. As a by-product, we obtain also the strong tractability of stochastic partial differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 72 شماره
صفحات -
تاریخ انتشار 2003